
Postprint, 2008

Process Model Abstraction: A Slider Approach

Artem Polyvyanyy, Sergey Smirnov, and Mathias Weske
Business Process Technology Group

Hasso Plattner Institute at the University of Potsdam
D-14482 Potsdam, Germany

{Artem.Polyvyanyy,Sergey.Smirnov,Mathias.Weske}@hpi.uni-potsdam.de

Abstract

Process models provide companies efficient means for
managing their business processes. Tasks where process
models are employed are different by nature and require
models of various abstraction levels. However, maintain-
ing several models of one business process involves a lot of
synchronization effort and is erroneous. Business process
model abstraction assumes a detailed model of a process
to be available and derives coarse grained models from it.
The task of abstraction is to tell significant model elements
from insignificant ones and to reduce the latter. In this pa-
per we argue that process model abstraction can be driven
by different abstraction criteria. Criterion choice depends
on a task which abstraction facilitates. We propose an ab-
straction slider—a mechanism that allows user control of
the model abstraction level. We discuss examples of com-
bining the slider with different abstraction criteria and sets
of process model transformation rules.

1 Introduction

Business process models are the instrument facilitating
business process management task in modern companies.
Every model is a representation of a business process used
by a certain group of stakeholders. The desired level of
model granularity depends on a stakeholder and a current
task. Top level management prefers coarse grained process
descriptions facilitating fast and correct business decisions,
while employees directly executing processes appreciate
fine granular specifications of working procedures. Thus,
it is a common situation when a company maintains sev-
eral models for one business process. To ease the mainte-
nance, modeling notations like Business Process Modeling
Notation (BPMN) [6] or Yet Another Workflow Language
(YAWL) [1, 2], allow hierarchical model structuring. A
model hierarchy permits organizing process details at differ-
ent abstraction levels. Unfortunately, these approaches re-

quire considerable effort when a process model is changed:
keeping separate models consistent as well as preserving
inter subprocess dependencies is laborious. Different ap-
proaches of presenting significant process model informa-
tion to a user are discussed in [3, 4, 5, 10, 13]. An alter-
native approach is to derive coarse grained process models
from the existing detailed models on demand. This tech-
nique can be referred to as a process model abstraction.

Abstraction is generalization that reduces the undesired
details in order to retain only information relevant for a par-
ticular task. Abstraction mechanisms are used in many do-
mains where users suffer from information overload. One
of the most well-known examples is cartography, where ge-
ographical maps visualize landscapes on different scales.
While a map of a particular town provides detailed infor-
mation on houses and side streets, the world map captures
shapes of continents, main river contours, and marks loca-
tions of the largest cities. To stay useful to a reader large
scale geographical maps reduce the level of details, but are
based on the information derived from the detailed maps.
Process model abstraction goal is to produce a model con-
taining significant information based on the detailed model
specification.

The ideas presented in this paper emerged from a joint
research project with AOK Brandenburg—the health insur-
ance company in Teltow, Germany. The operational pro-
cesses of the company are captured in about 4 000 event-
driven process chains (EPC) [9]. The goal of the project is
to derive methods of automated abstractions from process
model details. In [11] we have discussed the developed ab-
straction mechanisms. This paper focuses on the method
providing a user control over the abstraction—an abstrac-
tion slider.

The paper has the following structure. Section 2 provides
definition for the key concepts and motivates process model
abstraction by providing several abstraction scenarios. Sec-
tion 3 introduces a slider control and explains how it can
be employed for the task of process model abstraction. The
work continues with section 4, presenting ideas of combin-

ing the slider with model transformation rules. The paper
concludes with a contribution summary.

2 Process Model Abstraction

In this section we provide basic definitions, describe sev-
eral motivating abstraction scenarios, and derive abstraction
criteria that can be employed for controlling the process of
model abstraction.

2.1 Fundamentals

Let us start with the definition of a process model
adopted from [14].

Definition 1 (N,E, type) is a process model if:

• N = NA ∪NE ∪NG is a set of nodes where NA 6= ∅
is a set of activities, NE is a set of events, and NG is a
set of gateways; the sets are mutually disjoint

• E ⊆ N ×N is a set of directed edges between nodes
representing the control flow

• (N,E) is a connected graph

• type : NG → {and, xor, or} is a function that assigns
to each gateway a control flow construct.

Given Definition 1 we define a business process model ab-
straction as a function performing a process model transfor-
mation.

Definition 2 A business process model abstraction is a
function A : P × S → P , such that:

• P is a set of process models

• S is an abstraction setting, S ⊆ C × R:

– C ⊆ T × {asc, desc} is a finite set of abstrac-
tion criteria, where T is a set of abstraction crite-
ria types, asc indicates that higher criterion val-
ues are of higher significance, desc indicates that
lower criterion values are of higher significance

– R is the set of real numbers; an element of this
set is the criterion value distinguishing significant
elements from insignificant

• if p′ = A(p, s), where p, p′ ∈ P, s ∈ S, p =
(N,E, type), p′ = (N ′, E′, type′), then |N ′| ≤ |N |.

An abstraction process transformation must not increase
the number of model nodes. The parameters of an abstrac-
tion function are a process model and an abstraction setting.
An abstraction setting defines a subspace of abstraction cri-
teria values and, thus, puts restriction on the elements which

should appear in the abstracted process model. Only model
elements conforming to the abstraction setting should re-
main in the resulting model. An abstraction criterion is a
pair, where the first element is a criterion type and the sec-
ond element is a hint specifying the relation between the
element criterion value and the element significance. An
example of the abstraction criterion can be a pair (activity
execution cost, asc), i.e., the higher the execution cost, the
higher the activity significance in the model.

Abstraction task implies answering its what and how:

• What parts of a process model are of low significance?

• How to transform a process model so that insignificant
parts are removed?

Answers to both questions should address the current ab-
straction context, i.e., a business task a user solves at the
moment. The choice of an abstraction setting answers the
what question. A concrete abstraction function implemen-
tation answers the how question.

2.2 Abstraction Scenarios

In this paper we aim at learning common principles of
process model abstraction. Let us introduce several process
model abstraction use cases. The use cases presented are
the starting point for analysis and understanding of the ab-
straction problem.

A business process model analyst might be interested in
activities which are executed frequently in a process. Such
activities are of high importance, since they noticeably in-
fluence execution time and cost of a business process. Con-
sequently, these activities play an important role in such
tasks as business process optimization and reengineering.

Alternatively, an analyst can be interested in activities
that consume more time in comparison to other process ac-
tivities. These activities contribute a large share to the over-
all process execution time and are natural candidates for be-
ing studied during the task of process improvement. Once
such an activity is optimized, the overall process execution
time might drop considerably. Besides, in some situations
the execution cost is proportional to the execution time.

Activity execution cost and overall process execution
cost are crucial properties of a business process. Since an
activity cost has a direct influence on the overall process
cost, identification of activities with high costs is another
scenario.

Abstractions that reduce insignificant process instances
constitute another set of abstraction scenarios. In these sce-
narios properties of process instances are used as abstrac-
tion criteria. For example, one might be interested in “typ-
ical” executions of a business process model. A typical ex-
ecution means that among all possible ways of a business

process completion it is the one that is executed most often.
Abstractions of this type result in process models describing
only process instances which are often observed. Similarly,
process instances with the highest duration or cost may be
in the focus of process abstraction task. These abstractions
result in a process model representing either most time con-
suming or most “expensive” process instances.

2.3 Abstraction Criteria

Abstraction criteria help to tell significant process model
elements from insignificant. Abstraction criteria are prop-
erties of model elements or model fragments that enable el-
ements comparison and allow identifying information rele-
vant for the task at hand. Analysis of the business scenarios
shows that different abstraction criteria can be used for the
task of business process model abstraction. A choice of an
abstraction criterion or a set of criteria is problem specific.
The following abstraction criteria can be derived from the
aforementioned scenarios.

Relative probability (pr) of reaching a process node n
from its direct predecessor np is the probability of an edge
transition from np to n, pr : {(np, n) ∈ E} → [0, 1].

Mean occurrence number of a node (mi) is the mean
number that the node i occurs in a process instance.

Relative effort of a process activity (er) is time required
to execute the activity, er : NA → R+.

The relative effort of an activity is measured in time units
(e.g., minutes or hours) and quantitatively coincides with
the activity duration. However, semantically the effort con-
cept is close to the concept of cost. For instance, if two
activities are executed in parallel their total effort is the sum
of efforts of both activities.

Absolute effort of a process activity (ea) is the mean ef-
fort contributed to the execution of the activity in a process
instance, ea : NA → R+. Absolute effort can be obtained
as the product of relative effort and the mean occurrence
number of the activity.

In addition to properties of process model activities,
properties of other model elements can be used as abstrac-
tion criteria. One can use properties of process instances as
abstraction criteria. A model abstraction based on such a
criterion preserves significant process instances in a model.
Following, we define abstraction criteria relevant to process
instances.

Probability of a process instance (Pi) is the probability
of a process instance i to happen within a process execution.

Effort of a process instance (Ei) is the effort to be in-
vested in the execution of a process instance i and can be
found as the sum of efforts of all the activities executed
within this instance.

The proposed list of abstraction criteria does not claim
to be a complete one. It can be extended once there is a

demand for new abstraction scenarios.
Each abstraction assumes that a process model contains

information required for the abstraction procedure or data
from which this information can be derived. For instance,
an abstraction using relative probability as abstraction crite-
rion requires a process model to possess information about
edge transitions. However, most process modeling nota-
tions, such as EPC or BPMN, can be extended to allow en-
riching models with such concepts as probability of edge
transition, activity execution time, or activity mean occur-
rence number.

3 Abstraction Slider

In this section we focus on the what question of the pro-
cess abstraction. We use a slider metaphor to propose an
approach enabling flexible control over process model ab-
straction. It is shown how the slider can be employed for
distinguishing significant process model elements from in-
significant ones. We provide examples demonstrating the
approach and illustrating that the slider works effectively
with different abstraction criteria.

3.1 Slider Concept

Once an abstraction criterion is selected, the required
level of abstraction should be specified. Since the desired
level of detail cannot be predicted without a priori knowl-
edge about the abstraction context, a decision about a suit-
able abstraction level is postponed to the moment when
there is a demand for a concrete model. Ideally, a user
should be able to change an abstraction level continuously
within the whole range from an initial detailed process
model to a process model containing only one activity. This
activity, bounding the abstraction level above, semantically
corresponds to the whole process. A model abstraction ex-
hibiting such a behavior can be controlled by an abstraction
slider.

The slider concept is employed in many engineering
systems, where a controlled parameter has to be changed
smoothly. Numerous examples of a slider can be found in
IT systems. For instance, this control is used in modern ge-
ographic information systems (GIS), where a user controls
map scale by means of a zoom slider. A slider is a simple
entity that can be formalized as follows.

Definition 3 A slider is an object that can be described by:

• [Smin, Smax]—a slider interval with a minimum value
Smin and a maximum value Smax

• s ∈ [Smin, Smax]—a slider state.

0

1

0.00

(a) Initial process model (b) Abstracted model with the slider set to 0.37 (c) Abstracted model with the slider set to 1.00

Figure 1. Process model abstraction slider (unreadability intended)

Every abstraction criterion discussed in this paper (see
section 2.3) has a quantitative measurement. Therefore, a
partial order relation holds for criterion values. Since cri-
teria describe elements of a process model, these elements
can be ordered according to the selected criterion. For in-
stance, if activity relative effort is used, an activity taking
two minutes precedes an activity taking four minutes. The
partial order relation enables element classification. One
can choose a value splitting the set into two classes: ele-
ments which criterion value is less than the specified value
and elements which criterion value exceeds it. Elements
of the first class are assumed to be insignificant and should
be omitted in the abstracted model, while elements of the
other class are significant and should be preserved. A value
according to which elements are classified is called an ab-
straction threshold. In the example, an abstraction thresh-
old of three minutes results in the two minutes activity to
be assumed insignificant and to be reduced, while the four
minutes activity is significant and is preserved in the ab-
stracted process model. Thus, a process model abstraction
slider is a function which for a given process model frag-
ment and a specified threshold value tells if this fragment
is significant or not. According to the slider definition, an
abstraction slider is a slider with the slider interval defined
on an interval of abstraction criterion values and the slider
state associated with the current threshold.

3.2 Abstraction Slider Examples

Figure 1 illustrates application of a slider to control a
business process model abstraction. In the example the ab-
straction criterion is activity absolute effort. Activities with
higher absolute efforts are considered to be more signifi-
cant, i.e., asc ordering is used. The business process is cap-
tured in EPC notation. Figure 1(a) presents the initial pro-
cess model. The business process model corresponds to the
case when the slider state is 0.00, i.e., no activities are re-

duced. If the slider state changes to 0.37, the model shown
in Figure 1(b) is produced. As a result of abstraction more
than 50% of the nodes are reduced. When the slider state is
set to 1.00, the process model degenerates into one activity
(see Figure 1(c)). Every abstracted business process model
contains only elements which properties exceed the speci-
fied threshold. Therefore, elements of an abstracted model
are more homogeneous in relation to a used abstraction cri-
terion.

From a user perspective a slider control regulates the
amount of elements preserved in a business process model.
The slider state is directly associated with the threshold
value, classifying model elements into significant and in-
significant. In the simplest case a user specifies an arbitrary
value used as a threshold (which means that the slider inter-
val is [−∞,+∞]). An obvious drawback of this approach
is that a user has to study a process model thoroughly in
order to provide a helpful threshold value. A low thresh-
old value makes all the elements in a process model to be
treated as significant, i.e., no nodes or edges are reduced.
On the other hand, a threshold which is too high may lead
to reduction of the whole process model to one activity. A
process model containing one activity provides such a small
amount of information about a business process that the ab-
stracted model becomes useless. To avoid confusing situa-
tions, the user should be guided by an interval in which all
the “useful” values of abstraction criteria lie.

Alternatively, the abstraction slider can control a share of
nodes to be preserved in a model. Since abstraction mecha-
nism possesses information about the model element prop-
erties, it is always possible to estimate the threshold value
which results in the reduction of the specified share of the
process model.

As we have mentioned, an abstraction slider can manage
abstraction process based on various criteria. Depending on
the chosen criteria and the current slider state, abstraction

XOR

XOR

SB-KH
expert

SB-KH
expert

SB-KH
expert

SB-KH
expert

SB-KH
expert

0.2 0.150.65

0.25 minute(s)

0.25 minute(s)

3.0 minute(s)

3.0 minute(s)

0.25 minute(s)

Open
KH-case is
available

Evaluate
LKNE-data

KH-case is
closed

AU-case
information is

available

Make a
telephone call

to KFB

Case is
documented

Make a
telephone call
to employee

Information
on case is not

available

Document
the results

Document
the results

0.45 minute(s)

0.0375 minute(s)

0.05 minute(s)

0.05 minute(s)

0.6 minute(s)

(a) Abstraction criterion is relative probability

XOR

XOR

SB-KH
expert

SB-KH
expert

SB-KH
expert

SB-KH
expert

SB-KH
expert

0.2 0.150.65

0.25 minute(s)

0.25 minute(s)

3.0 minute(s)

3.0 minute(s)

0.25 minute(s)

Open
KH-case is
available

Evaluate
LKNE-data

KH-case is
closed

AU-case
information is

available

Make a
telephone call

to KFB

Case is
documented

Make a
telephone call
to employee

Information
on case is not

available

Document
the results

Document
the results

0.45 minute(s)

0.0375 minute(s)

0.05 minute(s)

0.05 minute(s)

0.6 minute(s)

(b) Abstraction criterion is absolute effort

Figure 2. Process model abstraction sliders with different abstraction criteria

results in different process models. Consider two exam-
ples from Figure 2. In both cases the same fragment of an
EPC is shown. The fragment presents an exclusive choice
taking place during execution of an operational process in
health insurance industry. The process model is enriched
with the information about the probabilities of connection
transitions. Each function has two labels: function rela-
tive effort and function absolute effort (in italic). Figure 2
shows what parts of this fragment are considered to be sig-
nificant depending on the selected abstraction criterion and
the slider state. Two different criteria are used: relative
probability (Figure 2(a)) and activity absolute effort (Fig-
ure 2(b)). Color coding is used to show correspondence be-
tween the range of the slider state change and the elements
which are considered to be significant within this range. Let
us assume that activity absolute effort is considered as crite-
rion and the slider state changes in the range between 0.05
and 0.45 (colored with light gray). Function “Make a tele-
phone call to KFB” is considered significant in this range,
while functions “Evaluate LKNE-data” and “Document the
results” are insignificant. At the same time function “Make
a telephone call to employee” is significant till slider state
exceeds 0.60. Figure 2 vividly visualizes the importance
of abstraction criteria choice: the coloring of process frag-
ments substantially differs from one case to another.

4 Process Model Transformation

In this section we address the how question of the pro-
cess model abstraction task. We base our solution on pro-
cess model transformation and reduction rules. Reduction
and transformation rules are widely used for analysis of
process models and have been extensively studied in liter-
ature [7, 8, 12]. In this section two classes of abstraction
rules are introduced: elimination and aggregation. After-
wards, requirements for abstraction and their influence on
the transformation rules are discussed. We argue when each
of the techniques is appropriate. Finally, an example of an
abstraction approach is presented.

4.1 Elimination and Aggregation

Once it is known which elements of a process model
are insignificant, they have to be abstracted from. Different
techniques can be used to reduce insignificant elements. We
distinguish two approaches: elimination and aggregation.

Elimination means that an insignificant process model
element is omitted in the abstracted process model. As a
result of elimination a model contains no information about
the omitted model element. Elimination can be seen as the
simplest abstraction method. Although, it still requires rules

assuring that the process model is well-formed and preserv-
ing the ordering constraints of the initial model.

Aggregation implies that insignificant elements of a pro-
cess model are aggregated with other elements. In contrast
to elimination, aggregation allows preserving information
about the abstracted element in the model. If two sequen-
tial activities are aggregated into one activity, the properties
of the new activity comprise properties of the aggregated
activities. For instance, the execution cost of an aggregat-
ing activity can be defined as the sum of execution costs of
aggregated activities.

An abstraction approach can be based on the exclusive
usage of elimination or aggregation; combination of both
techniques is also possible. Elimination can be seen as the
simplest technique, since it requires only the rules of correct
elements dropping. However, elimination is insufficient in
many cases. Aggregation requires more sophisticated spec-
ification of how the properties of the aggregated elements
influence properties of aggregating elements. The choice
of an abstraction methodology depends on the requirements
imposed on the abstraction.

4.2 Transformation Requirements

An essential requirement for a process model abstrac-
tion is preserving the process execution logic: neither new
ordering constraints should be introduced, nor the existing
ones should be changed. Process transformation rules that
satisfy this requirement are discussed in [10].

Further, one may formulate additional requirements on
abstraction rules. If a company uses process models for es-
timation of the workforce required to execute business pro-
cesses, information about the absolute effort of process exe-
cution should be preserved in a process model. Abstractions
which preserve process properties are called property pre-
serving abstractions. In this particular case effort preserv-
ing abstraction is discussed. If an abstraction must be prop-
erty preserving, elimination is not sufficient: once a model
element is omitted all the information about its properties is
lost. Within a property preserving abstraction elimination
can be applied only to those elements which do not influ-
ence the property being preserved.

It is an additional requirement for any abstraction to pro-
duce well-formed abstracted process models. Thus, features
of modeling notations should be taken into account by trans-
formation rules. As a consequence, we can expect different
rules to be used, e.g., for EPC and BPMN.

Every requirement which is imposed on an abstraction
restricts transformation rules. It could be the case that an
insignificant model element cannot be reduced, because of
the too restrictive set of rules. Assume an effort preserving
abstraction should be performed. If there is an activity to be
reduced and the abstraction does not specify a rule how to

handle the given activity (so that the process absolute effort
is preserved), this activity should be preserved in the model.
In this sense an important finding is to show which class of
process models can be abstracted to one activity by a given
set of rules. As we have argued, not every set of rules allows
this. An abstraction which is not capable of reducing a pro-
cess model to one function is called best effort abstraction,
since it only tries to assure that a given process model is
abstracted to the requested level using the given set of rules.

4.3 Transformation Example

In [11] a process model abstraction approach is pre-
sented. Its cornerstone is a set of abstraction rules. We
would like to use these rules as an illustration of the con-
cepts discussed earlier and demonstrate how these rules can
function together with the abstraction slider and activity ab-
solute effort abstraction criterion.

The approach presented in [11] is capable of abstract-
ing process models captured in EPC. Two requirements are
imposed on abstraction: it should preserve ordering con-
straints of a process model and an absolute process effort.
While the former requirement is essential, the latter origi-
nates from the fact that abstracted process models have to
be used in head counting task (where overall process effort
is important). The approach is based on the set of trans-
formation rules called elementary abstractions. Four types
of elementary abstractions are proposed: sequential, block,
dead end, and loop abstraction.

Each elementary abstraction is associated with a certain
type of EPC fragment and defines how this fragment is
transformed. For instance, sequential abstraction describes
how two sequential functions of an EPC can be aggregated
into one function. The design of elementary abstractions al-
lows preserving ordering constraints as well as process ab-
solute effort. Elementary abstractions use both elimination
and aggregation techniques. For instance, sequential ab-
straction eliminates an event between two sequential func-
tions. On the other hand, functions are always aggregated,
since their elimination leads to effort leaks. Elementary ab-
stractions are organized into abstraction strategies. An ab-
straction strategy describes rules of elementary abstraction
composition, e.g. their application order.

As soon as each elementary abstraction handles only a
specific process fragment, a class of EPCs which can be
reduced to one function is implicitly defined by the elemen-
tary abstractions. Once a process model contains a fragment
which can not be handled by the given elementary abstrac-
tions, abstraction can not proceed. Therefore, an abstrac-
tion based on the named set of elementary abstractions is
the best effort abstraction.

The abstraction slider based on the activity absolute ef-
fort criterion can be used for identification of insignificant

model elements. Afterwards, the elementary abstractions
can be applied. Assume that we have used an abstrac-
tion strategy that specifies the following order of elemen-
tary abstractions: sequential, block, dead end, and loop el-
ementary abstraction. For every insignificant function to
be abstracted, starting from the one with the lowest abso-
lute effort, abstraction algorithm tries to apply transforma-
tion rules. If one of the elementary abstractions can be
employed, a function is aggregated. Then, the aggregat-
ing function has to be tested if it should be abstracted. The
algorithm works till all the functions in the model are sig-
nificant. The described abstraction mechanism guarantees
that it abstracts a process model at best effort, bringing the
process model either to the level specified by the slider or
to the state when no elementary abstraction can be applied.

The described abstraction approach is implemented in
a tool prototype. The tool supports abstraction of process
models captured in EPC notation.

5 Conclusions

Business process model abstraction is a way to derive
high level process models from the detailed ones. This pa-
per proposed a slider as the mean for controlling model
abstraction level. We argued that the abstraction task can
be decomposed into two independent subtasks: learning
process model elements which are insignificant (abstrac-
tion what) and abstracting from those elements (abstraction
how). The work reported primarily focuses on the former
problem.

Several abstraction scenarios were provided to motivate
the task of business process model abstraction. These sce-
narios were further reused to extract abstraction criteria. We
proposed to adopt a slider concept in order to manage ab-
straction criterion interval and specify desired abstraction
level. The principles of abstraction slider were explained,
as well as examples of its work were provided.

Finally, we have discussed process model transforma-
tion rules which can be employed together with the slider
approach for abstraction of insignificant model elements.
We have distinguished two abstraction techniques: elimi-
nation and aggregation. The properties of transformation
rules were discussed. Finally, we explained how the ab-
straction slider and the process transformation rules pro-
posed in [11] can be used together to perform process model
abstractions. However, it is also possible to employ rules
discussed in [10, 12]. Transformation rules proposed in [11]
are implemented in the process model abstraction tool pro-
totype. The results presented in this paper were obtained as
the output of the tool work.

As the direct continuation of this work we foresee devel-
opment of transformation rules which can be used together
with the abstraction slider concept. At the present mo-

ment the tool prototype supports abstraction of EPC mod-
els. As future steps we identify implementation of addi-
tional abstraction methods and generalization of already im-
plemented ones to handle other process modeling notations.

Acknowledgments

The authors acknowledge the support of the project part-
ner AOK Brandenburg in Teltow, Germany, in particular
Dr. Anke-Britt Möhr, Norbert Sandau, and Anja Niedersätz.

References

[1] W. Aalst, L. Aldred, M. Dumas, and A. Hofstede. Design
and Implementation of the YAWL System, 2004.

[2] W. Aalst and A. Hofstede. YAWL: Yet Another Work-
flow Language (Revised version). Technical Report FIT-TR-
2003-04, Queensland University of Technology, Brisbane,
2003.

[3] R. Bobrik, T. Bauer, and M. Reichert. Proviado—
Personalized and Configurable Visualizations of Business
Processes. In EC-Web, pages 61–71, 2006.

[4] R. Bobrik, M. Reichert, and T. Bauer. Parameterizable
Views for Process Visualization. Technical Report TR-
CTIT-07-37, Enschede, April 2007.

[5] R. Bobrik, M. Reichert, and T. Bauer. View-Based Process
Visualization. In BPM 2007, volume 4714 of LNCS, pages
88–95, Berlin, 2007. Springer Verlag.

[6] BPMI.org. Business Process Modeling Notation, 1.0 edition,
May 2004.

[7] B. Dongen, M. Jansen-Vullers, H. Verbeek, and W. Aalst.
Verification of the SAP Reference Models Using EPC Re-
duction, State-space Analysis, and Invariants. Comput. Ind.,
58(6):578–601, 2007.

[8] C. Günther and W. Aalst. Fuzzy Mining–Adaptive Process
Simplification Based on Multi-perspective Metrics. In BPM
2007, volume 4714 of LNCS, pages 328–343, Berlin, 2007.
Springer Verlag.

[9] G. Keller, M. Nüttgens, and A. Scheer. Semantis-
che Prozessmodellierung auf der Grundlage “Ereignisges-
teuerter Prozessketten (EPK)”. Technical Report Heft 89 (in
German), Veröffentlichungen des Instituts für Wirtschaftsin-
formatik University of Saarland, Saarbrücken, 1992.

[10] D. Liu and M. Shen. Workflow Modeling for Virtual Pro-
cesses: an Order-preserving Process-view Approach. Infor-
mation Systems, 28(6):505–532, 2003.

[11] A. Polyvyanyy, S. Smirnov, and M. Weske. Reducing the
Complexity of Large EPCs. Technical Report 22, Hasso
Plattner Institute at University of Potsdam, 2008.

[12] W. Sadiq and M. Orlowska. Analyzing Process Models
Using Graph Reduction Techniques. Information Systems,
25(2):117–134, 2000.

[13] M. Shen and D. Liu. Discovering Role-Relevant Process-
Views for Recommending Workflow Information. In DEXA,
pages 836–845, 2003.

[14] M. Weske. Business Process Management: Concepts, Lan-
guages, Architectures. Springer Verlag, 2007.

